Exponential Function on Complex Banach Algebra

نویسنده

  • Noboru Endou
چکیده

The papers [23], [24], [4], [5], [2], [20], [21], [9], [1], [22], [13], [15], [16], [12], [10], [11], [17], [14], [25], [3], [7], [6], [19], and [8] provide the notation and terminology for this paper. For simplicity, we adopt the following convention: X denotes a complex Banach algebra, w, z, z1, z2 denote elements of X, k, l, m, n denote natural numbers, s1, s2, s3, s, s ′ denote sequences of X, and r1 denotes a sequence of real numbers. Let X be a non empty normed complex algebra structure and let x, y be elements of X. We say that x, y are commutative if and only if: (Def. 1) x · y = y · x. Let us note that the predicate x, y are commutative is symmetric. One can prove the following propositions: (1) If s2 is convergent and s3 is convergent and lim(s2 − s3) = 0X , then lim s2 = lim s3. (2) For every z such that for every natural number n holds s(n) = z holds lim s = z. (3) If s is convergent and s is convergent, then s · s is convergent. (4) If s is convergent, then z · s is convergent. (5) If s is convergent, then s · z is convergent. (6) If s is convergent, then lim(z · s) = z · lim s. (7) If s is convergent, then lim(s · z) = lim s · z.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

$(-1)$-Weak Amenability of Second Dual of Real Banach Algebras

Let $ (A,| cdot |) $ be a real Banach algebra, a complex algebra $ A_mathbb{C} $ be a complexification of $ A $ and $ | | cdot | | $ be an algebra norm on  $ A_mathbb{C}  $  satisfying a simple condition together with the norm $ | cdot | $ on $ A$.  In this paper we first show that $ A^* $ is a real Banach $ A^{**}$-module if and only if $ (A_mathbb{C})^* $ is a complex Banach $ (A_mathbb{C})^{...

متن کامل

-

Let K be a (commutative) locally compact hypergroup with a left Haar measure. Let L1(K) be the hypergroup algebra of K and UCl(K) be the Banach space of bounded left uniformly continuous complex-valued functions on K. In this paper we show, among other things, that the topological (algebraic) center of the Banach algebra UCl(K)* is M(K), the measure algebra of K.

متن کامل

The structure of ideals, point derivations, amenability and weak amenability of extended Lipschitz algebras

Let $(X,d)$ be a compactmetric space and let $K$ be a nonempty compact subset of $X$. Let $alpha in (0, 1]$ and let ${rm Lip}(X,K,d^ alpha)$ denote the Banach algebra of all  continuous complex-valued functions $f$ on$X$ for which$$p_{(K,d^alpha)}(f)=sup{frac{|f(x)-f(y)|}{d^alpha(x,y)} : x,yin K , xneq y}

متن کامل

On Character Space of the Algebra of BSE-functions

Suppose that $A$ is a semi-simple and commutative Banach algebra. In this paper we try to characterize the character space of the Banach algebra $C_{rm{BSE}}(Delta(A))$ consisting of all  BSE-functions on $Delta(A)$ where $Delta(A)$ denotes the character space of $A$. Indeed, in the case that $A=C_0(X)$ where $X$ is a non-empty locally compact Hausdroff space, we give a complete characterizatio...

متن کامل

Reducibility of invertible tuples to the principal component in commutative Banach algebras

Let A be a complex, commutative unital Banach algebra. We introduce two notions of exponential reducibility of Banach algebra tuples and present an analogue to the Corach-Suárez result on the connection between reducibility in A and in C(M(A)). Our methods are of an analytical nature. Necessary and sufficient geometric/topological conditions are given for reducibility (respectively reducibility...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007